Н.Л. Свидунович

РУП «Институт защиты растений», аг. Прилуки, Минский р-н

ИНФИЦИРОВАННОСТЬ СЕМЯН КУКУРУЗЫ ГРИБАМИ РОДОВ *FUSARIUM* И *PENICILLIUM* И ВЛИЯНИЕ ГИДРОТЕРМИЧЕСКИХ УСЛОВИЙ НА ЭТОТ ПОКАЗАТЕЛЬ

Дата поступления статьи в редакцию: 29.06.2022 Рецензент: канд. с.-х. наук Яковенко А.М.

Аннотация. В статье представлены результаты анализа инфицированности семян различных гибридов кукурузы в Беларуси за 2013–2016 гг. В результате исследований установлена высокая зараженность семян фитопатогенами – до 86,6 % с доминированием грибов рода Fusarium – 11,3–53,4 %. Доля грибов Penicillium spp. составила 0,6–15,4 %. Наименьшая инфицированность зерен фузариозными грибами (от 4,0 до 23,1 %) отмечена у гибридов Днепровский 181 СВ, Полесский 185, 202, 212, 214, 218 СВ, Мос 182 СВ, Кубанский 140 СВ и Полтава. Установлено влияние погодных условий ІІ декады июля-сентября на зараженность семян Fusarium spp. и Penicillium spp.: чем больше уровень обеспеченности осадками, тем выше инфицированность семян.

Ключевые слова: кукуруза, болезни, гибриды, инфицированность, плесневение семян, фузариоз, пенициллиоз, погода.

Введение. Одним из путей получения высоких и стабильных урожаев кукурузы является использование высококачественного семенного материала, не зараженного патогенными и плесневыми грибами [3].

Семена кукурузы являются источником инфекции для многих возбудителей болезней, среди которых к наиболее часто распространенным в начальный период онтогенеза культуры и вредоносным относят плесневение семян [1, 4, 6, 8, 12, 13, 14, 19, 25]. Болезнь встречается во всех районах выращивания кукурузы [11, 19, 21, 22]. Возбудителями плесневения семян являются грибы родов Fusarium, Penicillium, Aspergillus и другие [6, 8, 15, 23, 24, 25, 26], которые ведут преимущественно сапротрофный образ жизни, но при благоприятных условиях окружающей среды могут поселяться на живой ткани и вызывать поражение [1].

Грибы рода *Fusarium* сохраняются в почве, на растительных остатках и семенах [5, 9, 17]. Немаловажную роль как источника инфекции играет и скрытая зараженность семян, которая способствует последующему поражению всходов [5]. При этом почвенная инфекция проникает в первичные корни, а семенная — в мезокотиль и далее в корневую шейку [7].

Источником инфекции *Penicillium* spp. (реже *Aspergillus* spp.) могут быть семена, зараженное зерно и почва. При инфицировании зерновок на их поверхности образуется плотное конидиальное спороношение серо-зеленого цвета. Интенсивное поражение семян и проростков болезнью может происходить в годы с затяжной прохладной весной, при ранних или оптимальных сроках сева, что обусловливает значительное снижение их полевой всхожести [1].

Интенсивное инфицирование семян может вызвать снижение их всхожести (до 35,0 %) или полную гибель ослабленных проростков [1, 10, 14].

Грибы развиваются в широком диапазоне температур — от +5.0 до +35.0 °C. В условиях похолодания плесневению нередко подвергаются до 70.0 % высеянных семян. Оптимальными условиями для развития грибов считаются: температура +8.0...+10.0 °C — для *Penicillium* spp., +10.0...+24.0 °C — для *Fusarium* spp. и достаточное количество влаги [14, 19, 20].

Таким образом, поскольку первичным источником инфекции многих болезней являются семена, возникла необходимость изучения их инфицированности фитопатогенами и влияния на этот процесс погодных условий.

Материал и методика исследований. В исследованиях по изучению инфицированности семян различных гибридов кукурузы использовали партии семян урожая 2013—2016 гг., полученные с Мозырского кукурузокалибровочного завода РСУП «Экспериментальная база «Криничная». Зараженность семян определяли в лаборатории фитопатологии РУП «Институт защиты растений» Минского района Минской области. Был проанализирован 41 образец семян кукурузы.

В лабораторных условиях анализ зараженности семян кукурузы возбудителями болезней проводили, используя метод «бумажных рулонов». Из каждой пробы семян отбирали по 100 зерен. На листах фильтровальной бумаги размером 20×80 см, на расстоянии 3,0–4,0 см от верхнего края, проводили карандашом линию. Бумагу смачивали водой и по проведенной линии на расстоянии 1,0 см раскладывали по 50 зерен кукурузы (повторность 2-кратная), на которые сверху накладывали ленту пергаментной бумаги шириной 5,0 см. Бумагу сматывали в нетугой рулон, который помещали в емкость с водопроводной водой высотой около 1/3 рулона, и оставляли при комнатной температуре в течение 10 суток. Спустя указанное время проводили оценку зараженности зерновок кукурузы грибами родов *Fusarium*, *Penicillium* и др. [2, 15].

Общую инфицированность семян вычисляли по формуле (1) [2]:

$$X = \frac{N}{n} \times 100,\tag{1}$$

где X – общая зараженность семян, %; N – общее количество семян в пробе (больных и здоровых), шт.; n – количество семян, взятых для анализа, шт.

В состав общей инфицированности семян входили также грибы родов Aspergillus, Alternaria, Rhizopus, Cladosporium, Mucor.

Для характеристики вегетационных периодов использовали не только основные метеорологические показатели, также оценивали и влагообеспеченность территории при помощи гидротермического коэффициента (ГТК) Г. Т. Селянинова по формуле (2) [18]:

$$ITK = \frac{\sum R \times 10}{\sum t},$$
 (2)

где $\sum t$ — сумма осадков (мм) за период с температурами выше 10 °C; $\sum R$ — сумма температур за то же время, °C.

Результаты исследований и их обсуждение. В результате исследований установлено, что семена различных гибридов кукурузы значительно инфицированы комплексом фитопатогенов (рисунок). Гибриды кукурузы были контаминированы в пределах от 31,1 до 86,6 %; в том числе грибами рода *Fusarium* spp. -11,3-53,4 %, *Penicillium* spp. - до 0,6-15,4 %.

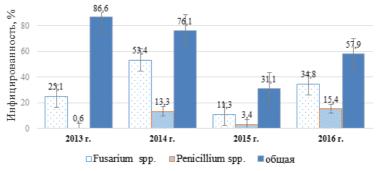


Рисунок – Инфицированность семян (± ошибка средней) гибридов кукурузы

Доминирование грибов рода *Fusarium* встречалось на гибридах Алмаз, Клифтон, Кремень 200 CB - 65,5; 57,5 и 49,2 % соответственно (таблица 1). Наименьшая зараженность семян (4,0–23,1 %) отмечена у гибридов Днепровский 181 CB, Полесский 185, 202, 212, 214, 218 CB и Мос 182 CB, Кубанский 140 CB, Полтава.

В среднем максимальная инфицированность грибов *Penicillium* spp. отмечена у гибридов Алмаз, Клифтон, Кремень 200 CB - 9,7-14,0 %, минимальная - у гибридов Moc 182 CB, Полесский 185 CB, 202 CB, 218 CB, 214 CB, 212 CB, Кубанский 140 CB - до 5,0 % (таблица 2).

Таблица 1 – Инфицированность семян гибридов кукурузы грибами *Fusarium* spp.

Fugnaria	Готи	Инфицированность семян, %		
Гибриды	Годы	диапазон	средняя*	
Алмаз	2014, 2016	50,0-81,0	65,5±15,5	
Днепровский 181 СВ	2013	4,0	4,0	
Клифтон	2014, 2016	46,0-69,0	57,5±11,5	
Кремень 200 СВ	2013, 2014, 2016	35,0-66,0	49,2±9,0	
Кубанский 140 СВ	2013	21,3	21,3	
Лювена	2013, 2014, 2016	23,0-36,7	33,2±5,2	
Матеус	2013, 2016	29,3-44,0	36,7±7,4	
Moc 182 CB	2013	11,3	11,3	
Полтава	2013, 2016	16,7–26,0	21,4±4,7	
Полесский 175 СВ	2013, 2014, 2015, 2016	9,0-53,0	28,4±9,8	
Полесский 212 СВ	2013, 2014, 2015, 2016	16,0-43,3	23,1±7,1	
Полесский 185 СВ	2015	19,0	19,0	
Полесский 202 СВ	2015	14,0	14,0	
Полесский 214 СВ	2015	15,0	15,0	
Полесский 218 СВ	2015	7,0	7,0	

^{*}Представлены средние значения ± стандартная ошибка.

Таблица 2 — Инфицированность семян гибридов кукурузы грибами Penicillium spp.

F. 6	Б	Инфицированность семян, %		
Гибриды	Годы	диапазон	средняя*	
Алмаз	2014, 2016	12,0-16,0	14,0±2,0	
Днепровский 181 CB	2013	1,3	1,3	
Клифтон	2014, 2016	10,0-12,0	11,0±1,0	
Кремень 200 СВ	2013, 2014, 2016	0,0-18,0	9,7±5,2	
Кубанский 140 СВ	2013	2,0	2,0	
Лювена	2013, 2014, 2016	0,7-16,0	10,2±4,8	
Матеус	2013, 2016	0,0-12,0	6,0±6,0	
Moc 182 CB	2013	0,0	0,0	
Полтава	2013, 2016	0,7-20,0	10,4±9,7	
Полесский 175 СВ	2013, 2014, 2015, 2016	0,7–20,0	9,7±4,9	
Полесский 212 CB	2013, 2014, 2015, 2016	0,0-14,0	5,0±3,1	
Полесский 185 СВ	2015	2,0	2,0	
Полесский 202 СВ	2015	5,0	5,0	
Полесский 214 СВ	2015	1,0	1,0	
Полесский 218 СВ	2015	0,0 0,0		

^{*}Представлены средние значения ± стандартная ошибка.

Исследования показали, что погодные условия вегетационного сезона существенно влияют на инфицированность семян кукурузы.

Поскольку семена были получены с гибридов, выращенных в Мозырском районе, проводился анализ гидротермических условий этого региона. В засушливых условиях (ГТК = 0,6) Мозырского района, в период со ІІ декады июля по сентябрь 2015 г., когда выпало 114,3 мм осадков, инфицированность семян грибами *Fusarium* spp. оказалась низкой – 11,3 % (таблица 3). При недостаточном увлажнении (ГТК = 0,9) в этот период зараженность семян достигала 25,1 и 34,8 % (2013 и 2016 гг.). Достаточная обеспеченность осадками в 2014 г. (ГТК = 1,1) способствовала росту инфицированности зерен кукурузы до 53,4 %. Количество выпавших осадков влияло также и на инфицированность семян грибами *Penicillium* spp.

Таблица 3 – Влияние гидротермических показателей II декады июлясентября на инфицированность семян кукурузы фузариозной инфекцией

Урожай	Средняя инфицированность партий семян, %		гтк	Осад-	Среднесуточная тем-	
года	Fusarium spp.	Penicillium spp.			ки, мм	пература воздуха, °С
2013	25,1	0,6	0,9	139,3	16,4	
2014	53,4	13,3	1,1	151,4	20,2	
2015	11,3	3,4	0,6	114,3	19,1	
2016	34,8	15,4	0,9	151,6	18,3	

C помощью корелляционно-регрессионного анализа выявлена тесная прямая зависимость между ГТК ($R^2=0,928,\ r=0,95$) со II декады июля по сентябрь и инфицированностью семян грибами *Fusarium* spp., а также между выпавшими осадками за данный период и зараженностью семян ($R^2=0,872,\ r=0,87$). Чем больше уровень обеспеченности осадками, тем выше зараженность семян грибами рода *Fusarium*.

Также была установлена прямая корреляционная зависимость между осадками и инфицированностью семян грибами *Penicillium* spp. $(R^2 = 0.696, r = 0.71)$.

Отмечено, что определяющим фактором, влияющим на инфицирование семян фузариозной и пенициллиозной инфекциями, являются гидротермические условия II декады июля-сентября, что совпадает с цветением – восковой спелостью зерна.

Заключение. Проведенные исследования выявили высокую инфицированность семян гибридов кукурузы — до 86,6 %. Среди фитопатогенов доминировали грибы *Fusarium* spp. — 11,3—53,4 %. Доля грибов *Penicillium* spp. составила 0,6—15,4 %. Выявлена прямая корреляционная зависимость между количеством осадков, ГТК за период II

декады июля-сентября и инфицированностью семян Fusarium spp., также между количеством осадков и зараженностью семян Penicillium spp.

Список литературы

- 1. Буга, С. Ф. Биологическое обоснование эффективности химической защиты кукурузы от болезней: рекомендации / С. Ф. Буга, А. Г. Жуковский, Т. Н. Жердецкая. Минск: РУП «Ин-т защиты растений», 2012. 54 с.
- 2. Государственный реестр производителей, заготовителей семян. МСХ РБ, Комитет по гос. контролю в сем-ве; отв. ред. Н. Н. Савосько. Минск: Ураджай, 1999. 316 с.
- 3. Екимова, В. Б. Оценка зараженности фитопатогенными грибами зерновых культур в лесостепной зоне Украины / В. Б. Екимова, О. А. Дрегваль, А. И. Винников // Биологический вестник МДПУ. −2014. № 3. С. 85-97.
- 4. Жердецкая, Т. Н. Жизнеспособность гриба *Ustilago zeae* (Beskm.) Unger в межвегетационный период как источник инфекции пузырчатой головни / Т. Н. Жердецкая, А. А. Жуковская // Защита растений: сб. науч. тр. – Минск, 2007. – Вып. 31. – С. 116-126.
- 5. Иващенко, В. Г. Болезни кукурузы фузариозной этиологии: основные причины и следствия (обзор) / В. Г. Иващенко // Вестник защиты растений. 2012. № 4. С. 3-19.
- 6. Иващенко, В. Г. Болезни кукурузы: этиология, мониторинг и проблемы сортоустойчивости / В. Г. Иващенко. СПб-Пушкин: ФГБНУ ВИЗР, 2015. 286 с.
- 7. Иващенко, В. Г. Колонизация кукурузы возбудителями стеблевых гнилей, распространенных на юге Украины / В. Г. Иващенко // Микология и фитопатология. -1989.-T. 23, № 6. -C. 572-576.
- 8. Иващенко, В. Г. Семенные инфекции кукурузы: этиология, диагностика, особенности защиты / В. Г. Иващенко // Вестник защиты растений. -2015. -№ 1 (83). С. 22-30.
- 9. Иващенко, В. Г. Фузариоз початков кукурузы / В. Г. Иващенко, Е. Ф. Сотченко, Н. П. Шипилова // Микология и фитопатология. -2000.-T.34, вып. 6.-C.63-70.
- 10. Иващенко, В. Г. Фузариозная и цефалоспориозная инфекция, ее влияние на жизнеспособность семян кукурузы и возможность переноса возбудителей / В. Г. Иващенко, В. А. Никоноренков // Бюл. ВИЗР. 1991. №75. С. 33—39.
- 11. Идентифікація ознак кукурудзи (Zea mays L.) (навчальний посібнік) / В. В. Кириченко [и др.]. Харків: Ін-т рослинництва ім. В. Я. Юрэва УААН, 2007. 137 с.
- 12. Каратыгин, И. В. Возбудители головни зерновых культур / И. В. Каратыгин. Л.: Наука, 1986. 112 с.
- 13. Каратыгин, И. В. Головневые грибы. Онтогенез и филогенез / И. В. Каратыгин. Л.: Наука, 1981. 216 с.
- 14. Кукуруза. Современная технология возделывания / А. П. Шиндин [и др.]. М.: РосАгроХим, 2009. 118 с.
- 15. Лукашик, Н. Н. Определение зараженности семян и проростков ячменя гельминтоспориозно-фузариозной инфекцией и качества их обеззараживанич: метод. указания / Н. Н. Лукашик, С. Ф. Буга, Л. Р. Войтова. Минск, 1982. 10 с.
- 16. Насіннева інфекція зернових колосових / М. І. Черняева [и др.]; Ін-т росл-ва ім. В. Я. Юр ева. Харьків, 2003. 14 с.
- 17. Наумова, Н. А. Анализ семян на грибную и бактериальную инфекцию / Н. А. Наумова. Л.: Колос, 1970. 207 с.
- 18. Селянинов, Г. Т. Методика сельскохозяйственной характеристики климата / Г. Т. Селянинов // Мировой агроклиматический справочник. М. Л., 1937. С. 5-27.
- 19. Сотченко, Е. Ф. Фузариоз початков кукурузы в Предгорной зоне Ставропольского края: этиология болезни, сортоустойчивость: автореф. дис. ... канд. биол. наук: 06.01.11 / Е. Ф. Сотченко; Краснодар, 2004.-22 с.
- 20. Справочник болезней зерновых культур: посвящается 50-летию основания РУП «Институт защиты растений» и 50-летию основания лаборатории фитопатологии: справ. изд. / Н. А. Крупенько [и др.] // РУП «Ин-т защиты растений», Лаборатория фитопато-

логии; под ред.: Н. А. Крупенько, А. Г. Жуковский, С. Ф. Буга; рец. Д. Войтка. – Минск: РУП Журнал «Белорусское сельское хозяйство», 2021. – 70 с.

- 21. Alakonya, A. E. Fumonisin B₁ and aflatoxin B₁ levels in Kenya maize / A. E. Alakonya, E. O. Monda, S. Ajanga // Plant Pathology. 2009. Vol. 91, № 2. P. 459-464.
- 22. Atlas chorob roslin rolniczych / M. Korbas [i wsp.] // Hortpress. Warszawa, 2016. 212 ss.
- 23. Characterization of Pythium spp. Associated with Corn and Soybean Seed and Seedling Disease in Ohio / K. D. Broders [et all.] // Plant Disease. 2007. Vol. 91, No. 6. P. 727-735.
- 24. Distribution Frequency and Incidence of Seed-borne Pathogens of Some Cereals and Industrial Crops in Serbia / J. Levic [et all.] // Pestic. Phytomed. 2012. Vol. 27, № 1. P. 33-40
- 25. Evaluation of Fusarium graminearum Associated with Corn and Soybean Seed and Seedling Disease in Ohio / K. D. Broders [et all.] // Plant Disease. 2007. Vol. 91, No. 9. P. 1155-1160
- 26. Munkvold, G. P. Importance of Different Pathways for Maize Kernel Infection by *Fusarium moniliforme /* G. P. Munkvold, D. C. McGee, W. M. Carlton // Phytopathology. Vol. 87 (2). 1997. P. 209-217.

N. L. Svidunovich

RUE «Institute of Plant Protection», Priluki, Minsk region

SEED INFECTION OF MAIZE WITH FUSARIUM AND PENICILLIUM AND IMPACT OF HYDROTHERMAL CONDITIONS

Annotation. The paper presents the results of the analysis of seed infection of different maize hybrids in Belarus for 2013–2016. As a result of the research a high infection of seeds with phytopathogenes (up to 86,6%) with *Fusarium* domination (11,3–53,4%) was determined. The share of *Penicillium* spp. amounted to 0,6–15,4%. The hybrids Dneprovsky 181 SV, Polessky 185, 202, 212, 214, 218 SV, Mos 182 SV, Kubansky 140 SV and Poltava demonstrated the lowest infection of seeds with *Fusarium* – 11,3%–53,4%. The impact of mid July-September weather conditions on infection of seeds with *Fusarium* spp. and *Penicillium* spp. was identified: the higher precipitation provision is, the higher seed infection is.

Key words: maize, diseases, hybrids, infection, seed mould, fusarium, penicilliosis, weather