Н. В. Лешкевич, А. Н. Бобович, А. А. Запрудский

РУП «Институт защиты растений», аг. Прилуки, Минский р-н

ЭФФЕКТИВНОСТЬ ДВУХКОМПОНЕНТНЫХ И ТРЕХКОМПОНЕНТНЫХ ФУНГИЦИДОВ В ЗАЩИТЕ ПОДСОЛНЕЧНИКА ОТ БОЛЕЗНЕЙ

Дата поступления статьи в редакцию: 19.08.2025 Рецензент: канд. биол. наук Янковская Е. Н.

Аннотация. В статье представлены результаты исследований по изучению биологической эффективности двухкомпонентных и трехкомпонентных фунгицидов в защите подсолнечника от альтернариоза, склеротиниоза и серой гнили.

Биологическая эффективность трехкомпонентного препарата на основе действующих веществ пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л в норме расхода 1,0 л/га при двукратном применении в результате двухгодичных исследований против альтернариоза в стадии «лимонная спелость» корзинки составила 68,7-69,7 %, склеротиниоза — 81,8-94,9 %, серой гнили — 63,4-89,8 %, двухкомпонентных фунгицидов на основе азоксистробин, 125 г/л + дифеноконазол, 125 г/л — 68,2-77,9 %; 81,8-100 %; 81,1-87,8 % и азоксистробин, 200 г/л + ципроконазол, 80 г/л — 60,1-78,7 %; 81,4-81,8 %; 85,7-93,5 соответственно. Применение данных фунгицидов позволило сохранить 3,8-4,9 ц/га.

Ключевые слова: подсолнечник масличный, фунгициды, болезни, альтернариоз, склеротиниоз, серая гниль, биологическая эффективность, развитие.

Введение. Подсолнечник является одной из основных масличных культур в мировом земледелии [1]. Однако, по данным Министерства сельского хозяйства и продовольствия в Республике Беларусь его посевные площади за последние 10 лет варьировали от 0,4 тыс. га до 6,5 тыс. га с урожайностью, не превышающей 23,0 ц/га.

Одной из причин, снижающих выход семян подсолнечника, является поражение его болезнями. Основными из которых в Беларуси являются альтернариоз, склеротиниоз и серая гниль.

Методика и условия проведения исследований. Исследования проводили в 2023 и 2024 гг. в посевах подсолнечника масличного гибрида НК Фортими в условиях ОАО «Жатерево» Столбцовского района, Минской области и опытного поля РУП «Институт защиты растений». Размер опытной делянки – 21,5 и 17,5 м², повторность — четырехкратная. Агротехника общепринятая для Центральной агроклиматической зоны. При проведении учетов на пораженность подсолнечника болезнями пользовались общепринятыми в фитопатологии методиками [2].

Степень поражения (R) определяли по формуле:

$$R = \frac{\sum (a \times b) \times 100}{N \times K}$$

где $\sum (a \times b)$ — сумма произведений числа больных растений (a) на соответствующий им балл поражения (b); N — общее количество учетных растений, шт; K — высший балл шкалы учета.

Стадии развития подсолнечника приведены в соответствии с десятичным кодом ВВСН [3].

Погодные условия Столбцовского района в вегетационном периоде 2023 года характеризовались в первой декаде мая относительно низкой температурой воздуха, на 3,6 °C ниже средней многолетней температуры и недостаточным выпадением осадков 29,6 % от нормы. Во второй и третьей декадах мая отмечены высокие температуры воздуха на 1,5 °C и 1,3 °C выше среднемноголетней и осадками на 5,1 и 0,0 % от нормы.

Первая декада июня была засушливой, без осадков. Во второй декаде отмечено повышение температуры воздуха на 1,2 °C от многолетних значений и низким количеством осадков (52,3 % от нормы). В третьей декаде июня также отмечено повышение температур относительно многолетней нормы с количеством осадков 200,8 %.

Первая и вторая декада июля характеризовалась температурами воздуха на уровне среднемноголетних значений и низким количеством осадков. В третьей декаде июля было отмечено высокое количество осадков 133,3 % от нормы и температуры воздуха, ниже на 1,8 °C от средней многолетней.

В августе отмечались повышенные среднесуточные температуры воздуха (на $5.4\,^{\circ}$ С выше нормы). В первой декаде отмечено избыточное выпадение осадков — $319.0\,^{\circ}$ от нормы, тогда как во второй и третей декадах выпало недостаточное количество — $48.2–55.8\,^{\circ}$ от нормы соответственно.

В первых двух декадах сентября наблюдались повышенные среднесуточные температуры воздуха (+5,2 и +6,6 °C) с недостаточным количеством осадков (41,2 % от нормы).

Первые две декады мая в 2024 г. характеризовались температурами воздуха близкими к норме. В первой и второй декадах месяца среднесуточная температура наблюдалась в пределах среднемноголетних значений, в третьей отмечалось потепление, и средняя температура воздуха была выше на 4,5 °С. В мае отмечалось низкое количество осадков, которое составило 18,4 % от нормы.

Температура воздуха в июне, также превышала среднемноголетнюю норму, но следует отметить, что количество осадков, выпавших за месяц, соответствовало норме с разницей в 2,0 мм. При этом в течение месяца наблюдался рост показателей температуры при неравномерном распределении осадков по декадам (123,8, 182,0 и 0,6 %,

соответственно). Такие условия способствовали быстрому росту и развитию культуры.

Температурный режим и влагообеспеченность в июле были на уровне среднемноголетних показателей, однако значительно варьировали по декадам. Если в первой и третьей декаде температура воздуха была на 1,6 °C и 0,6 °C выше среднемноголетней, то во второй выше на 4,4 °C. Сумма выпавших осадков составила 76,7, 13,3 и 239,3 % от нормы.

Август характеризовался повышенными температурами, которые были выше на 2,1 °C среднемноголетних значений и дефицитом влаги 44,3 % от нормы. В течение месяца наблюдался рост температуры с недостаточным выпадением осадков (44,3, 83,6, 48,0 %).

Температура воздуха сентября была выше уровня среднемноголетних данных на 7,4 °C, количество выпавших осадков составило 13,8 % от нормы.

Результаты исследований и их обсуждение. В условиях 2023 года погодные условия в ОАО «Жатерево» Столбцовского района, Минской области были благоприятны для развития болезней. Первые признаки поражения подсолнечника масличного альтернариозом отмечены в стадию 61 (начало цветения) с развитием 20,3 %. К завершению цветения степень поражения листьев альтернариозом достигла 31,7 % и далее интенсивно нарастала до 40,8 % к стадии развитие плодов. К стадии «лимонная спелость» корзинки развитие достигло умеренного уровня развития — 42,4 %. Поражение корзинки было более интенсивным. Если к завершению цветения развитие составило 4,7 %, то к ст. развитие плодов было 26,1 % и к «лимонная спелость» корзинки — 36,8 % (рисунок 1)

Исследования по изучению эффективности трехкомпонентного фунгицида на основе действующих веществ пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л из химических классов пиразолкарбоксамидов + стробилуринов + триазолов в норме расхода 1,0 л/га в посевах гибрида НК Фортими от альтернариоза на листьях показали, что к стадии начало цветения она составила 70,9 %, при развитии болезни в варианте без применения фунгицидов 20,3 %. Дальнейшими исследованиями была установлена эффективная защита от альтернариоза листьев. Биологическая эффективность в данных вариантах была на уровне или выше вариантов с применением двухкомпонентных фунгицидов на основе азоксистробин, $125 \, \Gamma/\pi +$ дифеноконазол, $125 \, \Gamma/\pi$ в норме расхода 1,0 л/га и азоксистробин, 200 г/л + ципроконазол, 80 г/л в норме расхода 0,75 л/га, относящихся к химическому классу стробилуринов + триазолов. Применение препарата с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л в норме расхода 1,0 л/га в защите корзинок от альтернариоза к стадии «лимонной спелости» корзинки позволило получить биологическую эффективность на уровне 69,7 % при развитии болезни в варианте без применения фунгицида 36,8 %. При этом эффективность при обработке двухкомпонентными препаратами составила 60,1–68,2 % (таблица 1).

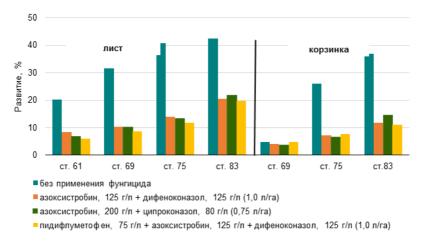


Рисунок 1 — Развитие альтернариоза в посевах подсолнечника масличного (ОАО «Жатерево», F1 НК Фортими, 2023 г.)

Таблица 1 — Биологическая эффективность фунгицидов в защите подсолнечника от альтернариоза (полевой опыт, ОАО «Жатерево», Столбцовский район, Минская область, гибрид НК Фортими, 2023 г.)

D	Ал	Альтернариоз листьев			Альтернариоз корзинок		
Вариант	ст. 61	ст. 69	ст. 75	ст. 83	ст. 69	ст. 75	ст. 83
Без применения фунги- цида*	20,3	31,7	40,8	42,4	14,7	26,1	36,8
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	58,1	67,5	65,9	51,7	71,4	72,4	68,2
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	66,0	67,5	67,4	48,3	74,8	74,3	60,1
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	70,9	72,5	71,3	53,3	68,0	70,5	69,7

Примечания: ст. 61 – начало цветения (17.07.23 г.); 69 – цветение (09.08.23 г.); 75 – развитие плодов (21.08.23 г.); ст. 83 – «лимонная спелость» корзинки (31.08.23 г.). Обработка фунгицидами проведена 05.07.23 г. и в ст. 51 (начало появления соцветия) и 01.08.23 г. в ст. 65 (полное цветение); * – развитие, %

Развитие белой гнили (Sclerotinia sclerotiorum (Lib.) de Bary) на стеблях подсолнечника в посевах отмечена со ст. 75 (развитие плодов). В варианте без применения фунгицидов данный показатель составил 1,3 % на стеблях, и 3,2 % на корзинках. К стадии «лимонной спелости» корзинки степень поражения на стеблях достигла 6,7 %, и 5,9 % на корзинках, что было на депрессивном уровне течения болезни (рисунок 2).

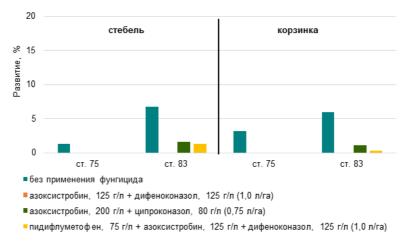


Рисунок 2 — Развитие склеротиниоза в посевах подсолнечника масличного (ОАО «Жатерево», F1 НК Фортими, 2023 г.)

Биологическая эффективность исследуемого фунгицида на основе действующего вещества пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л в норме расхода 1,0 л/га в защите стебля была 80,6 %, в то время как в вариантах с действующими веществами азоксистробин, 125 г/л + дифеноконазол, 125 г/л в норме расхода 1,0 л/га и азоксистробин, 200 г/л + ципроконазол, 80 г/л в норме расхода 0,75 л/га – 76,1–100 %. Эффективность против склеротиниоза корзинок в стадию 83 («лимонная спелость» корзинки) в изучаемых вариантах опыта была на уровне 81,4 %–94,9 % (таблица 2).

Развитие серой гнили на стеблях подсолнечника было отмечено к ст. 75-3,4% в варианте без применения фунгицида. Степень поражения серой гнили на корзинках подсолнечника в стадию 75 (развитие плодов) составило 1,2%, но к завершению вегетации достигла 15,3% (рисунок 3).

Таблица 2 — Биологическая эффективность фунгицидов в защите подсолнечника от склеротиниоза (полевой опыт, ОАО «Жатерево», Столбцовский район, Минская область, гибрид НК Фортими, 2023 г.)

Вариант		тиниоз лей	Склеротиниоз корзинок		
•	ст. 75	ст. 83	ст. 75	ст. 83	
Без применения фунгицида*	1,3	6,7	3,2	5,9	
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	100	100	100	
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	100	76,1	100	81,4	
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	80,6	100	94,9	

Примечания: ст. 75 – развитие плодов (21.08.23 г.); ст. 83 – «лимонная спелость» корзинки (31.08.23 г.). Обработка фунгицидами проведена 05.07.23 г. в ст. 51 (начало появления соцветия) и 01.08.23 г. в ст. 65 (полное цветение); * – развитие, %.

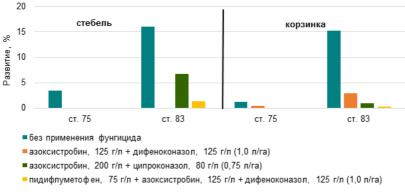


Рисунок 3 – Развитие серой гнили в посевах подсолнечника масличного (ОАО «Жатерево», F, НК Фортими, 2023 г.)

Биологическая эффективность в защите стебля в варианте с пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) к ст. 83 составила 98,1 %, в то время как в вариантах с д.в. азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) – 100 %, азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) – 58,0 %. Эффективность в защите корзинки в период «лимонная спелость» корзинки (ст. 83) с применением двухкомпонентных фунгицидов с содержанием д.в. азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) и азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) была 81,1–93,5 %,

в варианте с трехкомпонентным фунгицидом с содержанием д.в. пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) - 63,4 %. (таблица 3).

Таблица 3 — Биологическая эффективность фунгицидов в защите подсолнечника от серой гнили (полевой опыт, ОАО «Жатерево», Столбцовский район, Минская область, гибрид НК Фортими, 2023 г.)

Вариант	Серая стеб	гниль элей	Серая гниль корзинок		
_	ст. 75		ст. 75	ст. 83	
Без применения фунгицида*	3,4	16,0	1,2	15,3	
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	100	66,7	81,1	
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	100	58,0	100	93,5	
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	98,1	100	63,4	

Примечания: ст. 75 – развитие плодов (21.08.23 г.); ст. 83 – «лимонная спелость» корзинки (31.08.23 г.). Обработка фунгицидами проведена 05.07.23 г. и в ст. 51 (начало появления соцветия) и 01.08.23 г. в ст. 65 (полное цветение); * – развитие, %.

Расчеты хозяйственной эффективности фунгицида в варианте с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га), при двукратном применении в период бутонизации (ст. 51) и полного цветения (ст. 65), в защите подсолнечника от болезней показали, что за счет его применения сохранено 4,9 ц/га маслосемян культуры. Разница в хозяйственной эффективности между вариантами с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га), и двухкопмонентными препаратами на основе действующих веществ азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) и азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) была несущественной (таблица 4).

Таблица 4 — Хозяйственная эффективность фунгицидов в посевах подсолнечника (полевой опыт, ОАО «Жатерево», Столбцовский район, Минская область, гибрид НК Фортими, 2023 г.)

Вариант	Масса 1000 семян, г	Урожай- ность, ц/га	Сохраненный урожай, ц/га
Без применения фунгицида	48,4	24,5	_
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	51,3	29,3	4,8
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	50,3	29,0	4,5
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	50,0	29,4	4,9
HCP ₀₅	1,3	1,5	_

Развитие альтернариоза в условиях опытного поля РУП «Институт защиты растений» в 2024 г. на листьях подсолнечника в период обработки «бутонизация» (ст. 55) составило 4,2 %. Степень поражения альтернариозом к стадии 65 в варианте без применения фунгицида достигала 17,3 %. Интенсивность нарастания болезни увеличилась во второй половине вегетации культуры. Так, к завершению цветения развитие было 25,5 %, к стадии развитие плодов составило 32,7 % и к «лимонной спелости» корзинки достигло 39,6 %. Первые признаки поражения альтернариозом на формирующихся корзинках отмечены в период начала цветения подсолнечника (ст. 61) на уровне 1,1 % в варианте без применения фунгицида. Далее болезнь на корзинке развивалась с низкой интенсивностью и к созреванию культуры оставалась на депрессивном уровне (рисунок 4).

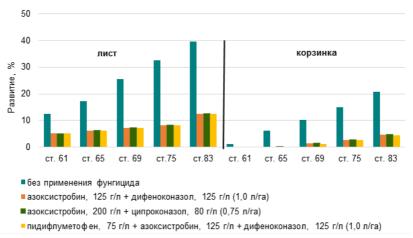


Рисунок 4 — Развитие альтернариоза в посевах подсолнечника масличного (РУП «Институт защиты растений» F_1 НК Фортими, 2024 г.)

Биологическая эффективность трехкомпонентного фунгицида с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) в ст. 65 составила 64,2 %, что было на уровне препаратов с действующими веществами азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) – 64,7 % и азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) – 63,6 %. В стадию 83 («лимонная спелость» корзинки) биологическая эффективность фунгицида с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л в норме расхода 1,0 л/га составила

68,7%, в вариантах препаратов с действующими веществами азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) и азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) – 68,4 % и 68,2 % соответственно (таблица 5,6).

Таблица 5 — Биологическая эффективность фунгицидов в защите подсолнечника от альтернариоза листьев (полевой опыт, РУП «Институт защиты растений», гибрид НК Фортими, 2024 г.)

Panyaya	Альтернариоз листьев						
Вариант	ст. 61 ст. 65	ст. 69	ст. 75	ст. 83			
Без применения фунгицида*	12,4	17,3	25,5	32,7	39,6		
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	58,9	64,7	71,4	75,2	68,4		
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	58,1	63,6	71,4	74,6	68,2		
Пидифлуметофен, 75 г/л + азок- систробин, 125 г/л + дифенокона- зол, 125 г/л (1,0 л/га)	58,9	64,2	71,8	74,9	68,7		

Примечания: ст. – стадия; 61 – начало цветения (25.07.24 г.); 65 – полное цветение (14.08.24 г.); 69 – конец цветения (26.08.24 г.); 75 – развитие плодов (04.09.24 г.); ст. 83 – «лимонная спелость» корзинки (14.09.24 г.). Обработка фунгицидами проведена 15.07.24 г. в ст. 55 (бутонизация) и 14.08.24 г. в ст. 65 (полное цветение); * – развитие, %

Таблица 6 — Биологическая эффективность фунгицидов в защите подсолнечника от альтернариоза корзинок (полевой опыт, РУП «Институт защиты растений», гибрид НК Фортими, 2024 г.)

Rangaux	Альтернариоз корзинок					
Вариант	ст. 61	ст. 65	ст. 69	ст. 75	ст. 83	
Без применения фунгицида*	1,1	6,3	10,2	14,9	20,7	
Азоксистробин, 125 г/л + дифенокона- зол, 125 г/л (1,0 л/га)	100	96,8	86,3	81,2	77,3	
Азоксистробин, 200 г/л + ципрокона- зол, 80 г/л (0,75 л/га)	100	96,8	85,3	80,5	76,8	
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	96,8	87,3	81,9	78,3	

Примечания: ст. – стадия; 61 – начало цветения (25.07.24 г.); 65 – полное цветение (14.08.24 г.); 69 – конец цветения (26.08.24 г.); 75 – развитие плодов (04.09.24 г.); ст. 83 – «лимонная спелость» корзинки (14.09.24 г.). Обработка фунгицидами проведена 15.07.24 г. в ст. 55 (бутонизация) и 14.08.24 г. в ст. 65 (полное цветение); * – развитие, %.

В период полного цветения посевы подсолнечника поражались склеротиниозом на уровне 6,7 %. Развитие болезни на корзинках подсолнечника было отмечено в стадию 75-2,4 %.

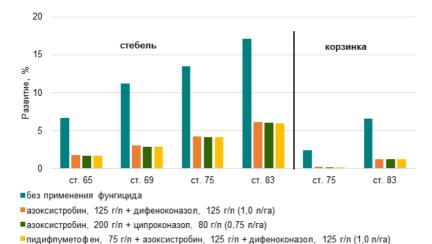


Рисунок 5 – Развитие склеротиниоза в посевах подсолнечника масличного (РУП «Институт защиты растений» F1 НК Фортими, 2024 г.)

Биологическая эффективность фунгицида в варианте с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) в стадии полное цветение была 74,6 %, что было на уровне вариантов с действующими веществами азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) – 73,1 % и азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) – 74,6 %. К стадии 83 («лимонная спелость» корзинки) биологическая эффективность препарата с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) составила 65,5 %, а в вариантах с двухкомпонентными действующими веществами — 64,3–64,9 %.

На корзинках в период «лимонная спелость» корзинки (ст. 83), когда развитие белой гнили в варианте без применения фунгицидов было 6,6 %, биологическая эффективность препаратов с трехкомпонентным и двухкомпонентыми действующими веществами была 81,8 %. (таблица 7).

Поражение подсолнечника серой гнили было отмечено только на корзинках ст. 75 на уровне 2,0 %. К завершению вегетации степень поражения оставалась на депрессивном уровне и не превышала 4,9 % (рисунок 6).

Таблица 7 – Биологическая эффективность фунгицидов в защите подсолнечника от склеротиниоза (полевой опыт, РУП «Институт защиты растений», гибрид НК Фортими, 2024 г.)

Вариант	Cı	Склеротиниоз стеблей				Склеротиниоз корзинок	
	ст. 65	ст. 69	ст. 75	ст. 83	ст. 75	ст. 83	
Без применения фунгицида*	6,7	11,2	13,5	17,1	2,4	6,6	
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	73,1	73,2	68,9	64,3	91,7	81,8	
Азоксистробин, $200 \ г/л + ци-проконазол, 80 \ г/л \ (0,75 \ л/га)$	74,6	74,1	69,6	64,9	95,8	81,8	
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	74,6	74,1	69,6	65,5	95,8	81,8	

Примечания: ст. – стадия; 61 – начало цветения (25.07.24 г.); 65 – полное цветение (14.08.24 г.); 69 – конец цветения (26.08.24 г.); 75 – развитие плодов (04.09.24 г.); ст. 83 – «лимонная спелость» корзинки (14.09.24 г.). Обработка фунгицидами проведена 15.07.24 г. в ст. 55 (бутонизация) и 14.08.24 г. в ст. 65 (полное цветение); * – развитие, %.

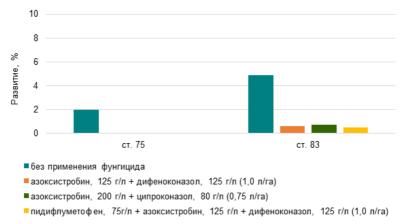


Рисунок 6 – Развитие серой гнили в посевах подсолнечника масличного (РУП «Институт защиты растений» F1 НК Фортими, $2024~\mathrm{F.})$

Биологическая эффективность по всем вариантам опыта достигала 100~% и сохранялась на высоком уровне до ст. 83~(«лимонная спелость» корзинки). В ст. 83~в варианте с действующим веществом пидифлуметофен, 75~г/л + азоксистробин, 125~г/л + дифеноконазол, 125~г/л (1,0~л/га) эффективность составила 89,8~%, в вариантах с

азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га) – 87,8 % и азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га) – 85,7 % (таблица 8).

Таблица 8 – Биологическая эффективность фунгицидов в защите подсолнечника от серой гнили корзинок (полевой опыт, РУП «Институт защиты растений», гибрид НК Фортими, 2024 г.)

Вариант	Серая гниль корзинок			
Бариант	ст. 75	ст. 83		
Без применения фунгицида*	2,0	4,9		
Азоксистробин, 125 г/л + дифенокона- зол, 125 г/л (1,0 л/га)	100	87,8		
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	100	85,7		
Пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	100	89,8		

Примечания: ст. – стадия; 61 – начало цветения (25.07.24 г.); 65 – полное цветение (14.08.24 г.); 69 – конец цветения (26.08.24 г.); 75 – развитие плодов (04.09.24 г.); ст. 83 – «лимонная спелость» корзинки (14.09.24 г.). Обработка фунгицидами проведена 15.07.24 г. в ст. 55 (бутонизация) и 14.08.24 г. в ст. 65 (полное цветение); * – развитие, %.

Расчеты хозяйственной эффективности фунгицида с действующим веществом пидифлуметофен, 75 г/л + азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га), при двукратном применении в период бутонизации (ст. 55) и полного цветения (ст. 65), в защите подсолнечника от болезней в условиях 2024 г. показали, что за счет его применения сохранено 4,1 ц/га маслосемян культуры. Разница в хозяйственной эффективности между трехкомпонентным и двухкомпонентными фунгицидами была не существенной (таблица 9).

Таблица 9 — Хозяйственная эффективность фунгицидов в посевах подсолнечника (полевой опыт, РУП «Институт защиты растений», гибрид НК Фортими, 2024 г.)

Вариант	Масса 1000 семян, г	Урожай- ность, ц/га	Сохранен- ный урожай, ц/га
Без применения фунгицида	48,6	25,8	-
Азоксистробин, 125 г/л + дифеноконазол, 125 г/л (1,0 л/га)	51,4	29,9	4,1
Азоксистробин, 200 г/л + ципроконазол, 80 г/л (0,75 л/га)	50,3	29,6	3,8
Пидифлуметофен, 75 г/л $+$ азоксистробин, 125 г/л $+$ дифеноконазол, 125 г/л $(1,0$ л/га)	51,5	29,9	4,1
HCP ₀₅	1,3	2,8	_

Заключение. Анализ биологической эффективности трехкомпанентных и двухкомпанентных фунгицидов с химических классов пираколкарбоксамидов + стробилуринов + триазолов и стробилуринов + триазолов против альтернариоза, склеротиниоза и серой гнили были на высоком уровне, что позволило сохранить 3,8–4,9 ц/га маслосемян подсолнечника масличного.

Список литературы

- 1. Технология возделывания подсолнечника в условиях северо-востока Республики Беларусь : рекомендации / П. А. Саскевич, Л. Г. Коготько, В. Р. Кажарский [и др.] ; М-во сел. хоз-ва и продовольствия Респ. Беларусь, Гл. управление образования, науки и кадров, Белорус. гос. с.-х. акад. Горки : БГСХА, 2012. 58 с.
- 2. Методические указания по регистрационным испытаниям фунгицидов в сельском хозяйстве / Нац. акад. наук Беларуси, Науч.-практ. центр НАН Беларуси по земледелию, Ин-т защиты растений; под ред.: А. Г. Жуковского, Н. А. Крупенько, С. Ф. Буги. Минск : Колорград, 2024. 462 с.
- 3. Meier, U. Growth stages of mono-and dicotyledonous plants: BBCH Monograph / U. Meier; Ed. by U. Meier. 2 Edition. Berlin and Braunschweig: BBA, 2001. 158 p.

N. V. Leshkevich, A. N. Babovich, A. A. Zaprudsky RUE «Institute of Plant Protection», Priluki, Minsk region

EFFICIENCY OF TWO-COMPONENT AND THREE-COMPONENT FUNGICIDES IN PROTECTING SUNFLOWER FROM DISEASES

Annotation. The article presents the results of studies on the biological effectiveness of two-component and three-component fungicides in protecting sunflower from alternaria, sclerotinia and gray rot.

The biological efficiency of a three -component drug based on the active substances of pidiflometofen, 75 g/l + azoxistrin, 125 g/l + diphenonosol, 125 g/l in a rate of flow rate 1.0 l/ha with two -year use as a result of two -year studies against alternariosis in the "lemon ripe" stage amounted to 68.7-69.7 %,, sclerotiniosis – 81.8-94.9 %, gray rot – 63.4-89.8 %, two -component fungicides based on azoxistobine, 125 g/l + diphenonazole, 125 g/l - 68.2-77.9 %; 81.8-100 %; 81.1-87.8 % and azoxistobine, 200 g/l + cyproponazole, 80 g/l – 60.1-78.7 %; 81.4-81.8 %; 85.7-93.5, respectively. The use of fungicid data made it possible to preserve 3.8-4.9 c/ha.

Key words: oilseed sunflower, fungicides, diseases, alternaria, sclerotinia, gray mold, biological efficiency, development.