В. И. Халаева, А. В. Патракеева, М. В. Конопацкая РУП «Институт защиты растений», аг. Прилуки, Минский р-н

РАСПРОСТРАНЕННОСТЬ ЧЕРНОЙ НОЖКИ КАРТОФЕЛЯ И ВИДОВОЙ СОСТАВ ВОЗБУДИТЕЛЕЙ

Дата поступления статьи в редакцию: 10.06.2025 Рецензент: канд. с.-х. наук Радивон В. А.

Аннотация. Представлены данные по пораженности клубней сортов картофеля болезнями бактериальной этиологии, варьирующей в 2020–2024 гг. от 0,6 до 1,8 %. Показана распространенность черной ножки в период вегетации в агроценозах картофеля, достигающая в 2023 г. максимального развития 13,7 %. Иммунохроматографический анализ растений с признаками поражения черной ножкой позволил идентифицировать как возбудителей данной болезни — Pectobacterium atrosepticum и Dickeya dianticola, так и содержащихся в латентном состоянии возбудителей кольцевой гнили — Clavibacter michiganensis subsp. sepedonicus и Clavibacter michiganensis subsp. michiganensis. Диагностика растительных проб без внешних симптомов бактериальных болезней методом иммуноферментного анализа выявила скрытую форму инфицирования материала бактериальными патогенами. Распространенность С. michiganensis subsp. sepedonicus достигала 23,3 %, P. atrosepticum — 31,7 %.

Ключевые слова: черная ножка, мокрая гниль, клубни, картофель, бактериальные болезни, *P. atrosepticum, D. dianticola, C. michiganensis* subsp. *sepedonicus, C. michiganensis* subsp. *michiganensis*.

Введение. Черная ножка и связанная с ней мокрая (мягкая) гниль клубней считаются самыми распространенными бактериальными болезнями картофеля. Возбудителями являются пектолитические бактерии из рода *Pectobacterium* и *Dickeya* [4], входящие в число 10 наиболее экономически значимых патогенов растений [17]. По данным российских ученых потери урожая картофеля от данных болезней составляют 10,0–15,0 %, а в эпифитотийные годы могут превышать 50,0 % [4]. Белорусские ученые утверждают, что в процессе хранения теряется 30,0–50,0 % урожая [15]. Черная ножка является нормируемым заболеванием, поскольку требованиями к сортовым и посевным качествам семенного картофеля [16] определены строгие допуски наличия пораженных клубней, а также растений с внешними признаками болезни в посадках репродукционной категории.

Вредоносность бактериальных болезней обусловлена множеством факторов таких как:

1. Разнообразие видового состава возбудителей, идентификация которого осуществляется в диагностических лабораториях с помощью различных методов. Однако определить видовую структуру патогенов для каждого отдельного агроценоза, сорта или партии картофеля невозможно [5]. 2. Быстрое размножение бактерий простым делением материнской клетки на две части при благоприятных условиях [6] и увеличение инфекционной нагрузки в течение короткого периода времени [5]. Каждая половина клетки достигает взрослого состояния через 20-50 минут, после чего она вновь готова к делению [6]. 3. Латентное сохранение бактерий, как в клубнях, так и в растениях. От пораженных клубней могут вырастать визуально здоровые растения и клубни - от пораженных растений, которые, обычно, содержат в себе скрытую инфекцию. В отдельные годы до 75,0 % клубней под больным кустом оказываются носителями фитопатогенных бактерий [2, 8], а поражение 5,0 % растений в период вегетации приводит к потере 20,0 % и более клубней в период хранения [3]. 4. Быстрая передача и распространение бактерий. Возбудители бактериальной этиологии могут проникать в здоровую растительную ткань или клубни через чечевички, устьица или механические повреждения, полученные от насекомых, человека и техники. Некоторые бактерии способны перемещаться по сосудистой системе, проникать по столонам из зараженного клубня в стебли и обратно в молодые клубни. Распространяются с посевным материалом картофеля и другими растениями-хозяевами, а также через дождевую, поливную воду и вредителей-векторов [2, 7]. В среднем разовый разрез пораженного клубня заражает 50 здоровых клубней [1]. 5. Симптомы проявления бактериозов могут быть схожи с болезнями грибной этиологии или физиологическим старением растений. Так, например, в жарких и сухих условиях черную ножку, вызванную видами Dickeya spp., возможно спутать с вертицилезным увяданием [2], симптомами кольцевой или бурой гнили [3]. 6. Сложности в ограничении вредоносности бактериозов. Защита растений от бактериозов состоит из комплекса мер, направленных на предотвращение распространения патогенов и повышение иммунитета растений: использование здорового посадочного материала, соблюдение агротехнических и фитосанитарных мероприятий, применение препаратов химического и биологического синтеза для обработки клубней [3].

Возбудители черной ножки поражают растения и клубни, болезнь вредоносна во все фазы роста картофеля [2, 5]. В течение жизненного цикла бактерии родов *Pectobacterium* и *Dickeya* способны колонизировать не только картофель и овощные культуры, но и многие дикорастущие растения. Например, в Израиле были обнаружены 12 видов сорных растений,

в которых выявлена бактериальная инфекция, но внешние симптомы отсутствовали. Бактерии поражают чаще всего ослабленные растения. Основными факторами их вирулентности являются ферменты, разрушающие клеточную стенку, что приводит к деструкции растительной ткани, и как следствие, к появлению симптомов на растениях и клубнях. Экспрессия генов, отвечающих за выработку факторов вирулентности в достаточном количестве, происходит только при достижении определенного количества бактерий в растительной ткани [5].

На клубнях болезнь проявляется в поле во второй половине вегетации, наибольший ущерб возникает в период хранения картофеля, что обусловлено недостаточной вентиляцией, влажностью выше 90,0 % и температурой воздуха, превышающей 15,0–18,0 °С [13]. К концу периода хранения клубней возможно присоединение к патологическому процессу других патогенов грибной или бактериальной этиологии, обеспечивающих возникновение смешанных гнилей, возбудители которых сопутствуют друг друга, развиваясь в зависимости от условий по типу мокрых или сухих гнилей [10].

Штаммы *Dickeya* spp. способны вызвать поражение растений при более низкой инфекционной нагрузке, чем виды *Pectobacterium*, поскольку они имеют больше возможностей для распространения через сосудистую ткань и характеризуются значительно большей агрессивностью, а также длительно сохраняются в латентном состоянии в клубнях при низких температурах [3, 14]. Кроме того, для проявления на картофеле признаков болезни, обусловленной бактериями рода *Dickeya*, необходим более низкий уровень инфекции по сравнению с родом *Pectobacterium* [14]. В связи с этим виды *Dickeya* являются доминирующими возбудителями черной ножки [11]. Для проявления вредоносности бактерий рода *Pectobacterium* благоприятными являются прохладные температуры 18,0–25,0 °C и влажные условия, для *Dickeya* – оптимальным считается 28,0 °C и выше [11]. По сравнению с комплексом видов *P. carotovorum* бактерии *Dickeya* spp. менее морозостойки в почве и сохраняют жизнеспособность в воде [2].

Таким образом, высокая вредоносность черной ножки, изменение видового состава возбудителей, сложные таксономические отношения внутри и между родами обуславливают необходимость проведения мониторинга ее распространения и идентификации патогенов бактериальной этиологии, что и явилось целью исследований.

Методика проведения исследований. Фитосанитарную экспертизу пораженности клубней картофеля бактериальными болезнями проводили в 2020—2024 гг. путем маршрутных обследований. В конце периода хранения в хозяйствах республики отобраны образцы клубней

в соответствии с методикой по проведению клубневого анализа [9]. Количество сортообразцов, задействованных в исследованиях составило: в $2020 \, \Gamma$. -30; $2021 \, \Gamma$. -38; $2022 \, \Gamma$. -36; $2023 \, \Gamma$. -40; $2024 \, \Gamma$. -46.

Поскольку разграничить симптомы бактериальных болезней на клубнях на момент проведения визуального учета не представлялось возможным, то все их проявления отнесены к категории мокрая гниль. Распространенность гнилей как в чистом (мокрая), так и смешанном виде (мокрая + сухая, мокрая + фитофторозная) с участием грибов рода *Fusarium* и оомицета *Phytophthora infestans* (Mont.) de Bary, соответственно, выражали в процентах к общему числу клубней в образце [12].

Распространенность черной ножки в период вегетации оценивали в ходе маршрутных обследований посадок картофеля в хозяйствах республики, в Государственных сельскохозяйственных учреждениях сортоиспытательных станций (ГСХУ СС) и сортоиспытательных участков (СУ), а также на опытном поле РУП «Институт защиты растений» по общепринятой в фитопатологии методике [12]. В результатах представлена средняя распространенность болезни в посадках картофеля.

Экспрессное определение возбудителей бактериальных болезней растений картофеля осуществляли в 2022 г. в лаборатории защиты овощных культур и картофеля РУП «Институт защиты растений» с помощью иммунохромотагрифического анализа (ИХА) с применением наборов фирмы ООО «Аналитические Биотехнологии» (Россия) и компании «Loewe Biochemica» (Германия). Диагностику проводили согласно инструкции производителей. Отбор растительных проб с визуальными признаками поражения черной ножкой проводили рандомно в посадках картофеля в фазе цветения. В процессе исследований в 2022 г. задействованы 10 сортообразцов.

В 2023 г. диагностика возбудителей бактериозов картофеля проведена иммуноферментным анализом (ИФА) на 30 сортообразцах картофеля, отобранных с растений без видимых симптомов поражения болезнями бактериальной природы согласно инструкции производителя.

Встречаемость (%) возбудителей бактериальных болезней оценивали как отношение количества их выявлений к общему количеству анализируемых растительных образцов.

Результаты и их обсуждение. Анализ клубней в конце периода хранения позволил выявить признаки бактериальных болезней в чистом (мокрая гниль) и смешанном (мокрая + сухая, мокрая + фитофторозная) виде на отобранном материале. В исследуемые годы пораженность клубней болезнями бактериальной этиологии варьировала от 0,6 до 1,8 % (рисунок 1).

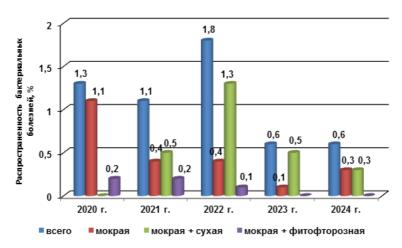


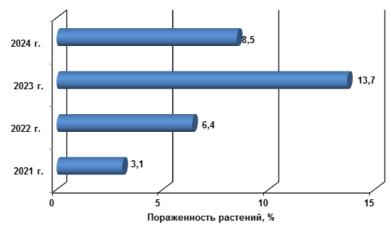
Рисунок 1 — Пораженность клубней сортов картофеля болезнями бактериальной этиологии (маршрутные обследования)

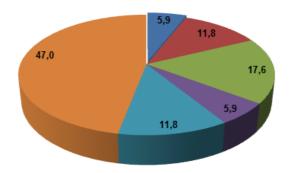
При этом ежегодно в годы исследований при проведении фитосанитарной экспертизы выявлялись клубни с признаками мокрой гнили, распространенность которой составила 0,1–1,1 %. Кроме того, результаты оценки качества клубневого материала показали, что в течение 2021–2024 гг. отмечались клубни с признаками комплексного проявления симптомов мокрой + сухой гнили, встречаемость которой достигала 1,3 %. Сочетание бактериозной и фузариозной инфекции в клубнях увеличивает зараженность растений бактериозами. Возможно, грибная инфекция стимулирует накопление бактерий [15].

Реже наблюдались клубни с симптомами мокрой + фитофторозной гнили, выявленные лишь в 2020–2022 гг. Распространенность болезни не превышала 0,3 %. Чаще этот тип гнили встречается в начальный период хранения, а к концу исчезает в результате ингибирующего действия бактерий [15].

Проявление бактериальных болезней отмечено и в период вегетации. Так, при обследовании элитных и репродукционных категорий посадок картофеля в 2021–2024 гг., черная ножка растений выявлена в различных агроценозах со средней распространенностью по сортам от 3,1 до 13,7 % (рисунок 2).

При этом максимальное развитие болезни отмечено в условиях 2023 г., а минимальное – в 2021 г. Исходя из требований к сортовым и посевным качествам семян допустимое значение количества растений, пораженных черной ножкой по внешним признакам, в репродукционных посадках не должно превышать 2,0 %. В элитной категории не допускается вовсе [16].




Рисунок 2 – Распространенность черной ножки в посадках сортов картофеля (маршрутные обследования)

Идентификация видового состава бактериальных патогенов с помощью ИХА метода показала, что чаще в анализируемых растительных образцах с явными симптомами поражения черной ножкой выявлены комплексы возбудителей, как данной болезни, так и кольцевой гнили, что может свидетельствовать о латентном сохранении бактериальной инфекции без проявления внешних признаков заболевания на растениях картофеля. При этом из возбудителей черной ножки чаще в образцах выявлялся вид *P. atrosepticum*, обнаруживаемый в двух- или трехкомпонентных комбинациях с другими видами бактерий. Доминирующим являлся комплекс, состоящий из двух возбудителей черной ножки *P. atrosepticum* + *D. dianticola* и одного патогена *C. michiganensis* subsp. *michiganensis*, вызывающего кольцевую гниль, встречаемость которого составила 47,0 % (рисунок 3).

Реже всего в растительных пробах диагностирована комбинация совместного выявления бактерий P. atrosepticum + C. michiganensis subsp. sepedonicus и отдельно возбудителя кольцевой гнили - C. michiganensis subsp. sepedonicus, обнаруженная у 5,9 % образцов. При этом одновременного присутствия двух патогенов черной ножки P. atrosepticum + D. dianticola в анализируемом растительном материале не отмечено.

Несмотря на то что, скрытую форму поражения растений черной ножкой в посадках элитного и репродукционного картофеля не контролируют, [16] научный интерес представляла диагностика отобранного материала без внешних признаков поражения бактериальными болезнями методом иммуноферментного анализа. Проведенные исследования

подтвердили литературные данные и результаты, полученные нами ранее путем экспресс-диагностики о латентном сохранении инфекции бактериальных возбудителей в растениях картофеля. Так, в ходе анализа установлено, что в среднем в разрезе сортов, с которых были отобраны пробы, распространенность возбудителя кольцевой гнили *С. michiganensis* subsp. *sepedonicus* варьировала от 10,0 до 23,3 %, черной ножки *Р. atrosepticum* – от 1,7 до 31,7 % (таблица).

- P. atros epticum + C. michiganens is subs p. s epedonicus
- P. atros epticum + D. dianthicola + C. michiganensis subsp. sepedonicus
- P. atros epticum + C. michiganens is subs p. michiganens is
- C. michiganensis subsp. sepedonicus
- D. dianthicola + C. michiganensis subsp. sepedonicus
- P. atros epticum + D. dianthicola + C. michiganensis subsp. michiganensis

Рисунок 3 – Встречаемость (%) возбудителей бактериальных болезней растений картофеля (ИХА, 2022 г.)

Таблица – Распространенность *C. michiganensis* subsp. sepedonicus (Cms) и *P. atrosepticum (Patro)* на картофеле (ИФА, 2023 г.)

Сорт	Распространенность, %									
	Гроднен- ский ГСУ		Витебский ГСУ		ГСХУ «Ко- бринская СС»		ГСХУ «Горецкая СС»		ГСХУ «Мо- лодечнен- ская СС»	
	Cms	Patro	Cms	Patro	Cms	Patro	Cms	Patro	Cms	Patro
Манифест	20,0	0,0	0,0	10,0	10,0	30,0	0,0	0,0	20,0	0,0
Скарб	10,0	0,0	0,0	10,0	10,0	20,0	0,0	0,0	16,7	16,7
Красавік	10,0	0,0	40,0	20,0	20,0	20,0	0,0	10,0	33,3	33,3
Рагнеда	20,0	10,0	10,0	30,0	90,0	90,0	0,0	0,0	20,0	10,0
Челленжер	10,0	0,0	10,0	0,0	0,0	20,0	0,0	0,0	20,0	10,0
Сапфир	10,0	0,0	0,0	0,0	10,0	10,0	0,0	10,0	20,0	0,0
Среднее	13,3	1,7	10,0	11,7	23,3	31,7	0,0	3,3	21,7	11,7

При этом выявлено как моно-, так и совместное присутствие возбудителей бактериальных болезней в анализируемых растениях картофеля. Так, из 30 диагностируемых сортообразцов возбудитель черной ножки *P. atrosepticum* отмечен у 56,7 % (рисунок 4).

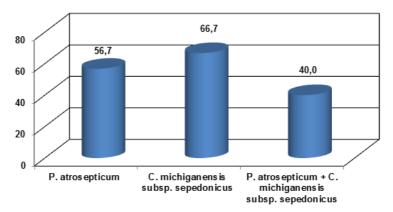


Рисунок 4 – Встречаемость возбудителей бактериальных болезней в растениях сортов картофеля (ИФА, 2023 г.)

Однако чаще в растительных пробах выявляли возбудителя кольцевой гнили *C. michiganensis* subsp. *sepedonicus*, встречаемость которого достигала 66,7 %. Идентификация одновременно двух возбудителей разных бактериальных болезней была характерна для 40,0 % сортообразцов.

В то же время среди общего количества сортообразцов были и такие, в растительном материале которых не обнаружено либо одного из возбудителей болезней, либо обоих. Без содержания латентной инфекции возбудителя черной ножки и кольцевой гнили выявлено $16,7\,\%$ сортообразцов картофеля, без возбудителя черной ножки $-43,0\,\%$, кольцевой гнили $-33,3\,\%$.

Заключение. В результате проведенных исследований установлено, что к концу периода хранения на клубнях картофеля ежегодно в течение 2020—2024 гг. отмечены болезни бактериальной этиологии, как в чистом, так и смешанном виде. Максимальная пораженность клубней мокрой гнилью составила 1,1 %, мокрой + фузариозной — 1,3 %, мокрой + фитофторозной гнилью — 0,2 %.

Отмечено повсеместное поражение растений черной ножкой, распространенность которой в годы исследований варьировала от 3,1 до 13,7 %.

Идентификация видового состава возбудителей черной ножки методом иммунохроматографического анализа растений с внешними признаками поражения болезнью показала, что в растительных пробах

выявляются комплексы бактерий, как возбудителей данной болезни, так и кольцевой гнили. Встречаемость совместного обнаружения видов варьировала от 5,9 % (P. atrosepticum + C. michiganensis subsp. sepedonicus) до 47,0 % (P. atrosepticum + D. dianticola + C. michiganensis subsp. michiganensis).

Видовой состав возбудителей бактериозов картофеля, выделенный из растений без видимых симптомов поражения, методом иммуноферментного анализа представлен 2 видами: *P. atrosepticum* и *C. michiganensis* subsp. *sepedonicus*, а также их комплексом. Встречаемость отдельных видов наблюдалась чаще.

Список литературы

- 1. Адамов, И. И. Семеноводство картофеля / И. И. Адамов. Минск : Урожай, 1967. 151 с.
- 2. Бактериальные патогены картофеля рода *Dickeya*: мини-обзор по систематике и этиологии заболеваний / А. Н. Игнатов, А. М. Лазарев, Ю. С. Панычева [и др.] // Сельско-хозяйственная биология. 2018. Т. 53, № 1. С. 123–131.
- 3. Бактериозы картофеля в Российской Федерации / А. Н. Игнатов, Ю. С. Панычева, М. В. Воронина [и др.] // Картофель и овощи. 2018. № 1. С. 3–6.
- 4. Васильева, А. А. Биологические свойства возбудителей черной ножки картофеля и меры защиты : автореф. дис. ... канд. биол. наук : 4.1.3. / Васильева Анна Андреевна ; Рос. гос. аграр. ун-т МСХА им. К. А. Тимирязева. Москва, 2024. 24 с.
- 5. Ерохова, М. Д. Фитопатогенные бактерии родов *Dickeya* и *Pectobacterium*: особенности патогенного процесса и возможные методы защиты картофеля / М. Д. Ерохова, М. А. Кузнецова // Биосфера. 2023. Т. 53, № 3. С. 193–203. URL: https://cyberleninka.ru/article/n/fitopatogennye-bakterii-rodov-dickeya-i-pectobacterium-osobennosti-patogennogo-protsessa-i-vozmozhnye-metody-zaschity-kartofelya/viewer (дата обращения: 12.03.2025).
- 6. Защита картофеля от болезней, вредителей и сорняков / Б. В. Анисимов, Г. Л. Белов, Ю. А. Варицев [и др.]; Рос. акад. наук с.-х. наук, Всерос. науч.-исслед. ин-т картофельного хоз-ва им. А. Г. Лорха, Биол. факультет Моск. гос. ун-та им. М. В. Ломоносова. М. : Картофелевод, 2009. 272 с.
- 7. Защита растений от болезней : учебник для студентов аграр. вузов / В. А. Шкаликов, О. О. Белошапкина, Д. Д. Букреев [и др.]; ред. В. А. Шкаликов, М. И. Толмачева. 3-е изд., испр. и доп. М. : Колос, 2010.— 404 с.
- 8. Интегрированная система защиты картофеля от фитофтороза, грибных, вирусных и бактериальных болезней : (практическое руководство) / М-во сел. хоз-ва РФ ; подгот. Н. Я. Кваснюк [и др.]. М.: Росинформагротех, 2006. 72 с.
- 9. Интегрированные системы защиты овощных культур и картофеля от вредителей, болезней и сорняков: рекомендации / С. В. Сорока, Ф. А. Попов, М. И. Жукова [и др.]; Науч.-практ. центр НАН Беларуси по земледелию, Ин-т защиты растений. Минск: Колорград, 2017. 233 с.
- 10. Кузнецова, М. А. Болезни картофеля при хранении / М. А. Кузнецова // Защита и карантин растений. 2006. № 10. С. 37–44.
- 11. Лазарев, А. М. О бактериозах картофеля / А. М. Лазарев, А. В. Хютти // Сельскохозяйственные вести. -2016. № 1. URL: https://agri-news.ru/zhurnal/2016/12016/zashhita-rastenij/o-bakteriozax-kartofelya.html (дата обращения: 24.03.2025).
- 12. Методические указания по регистрационным испытаниям фунгицидов в сельском хозяйстве / Нац. акад. наук Беларуси, Науч.-практ. центр НАН Беларуси по земледелию, Ин-т защиты растений ; под ред.: А. Γ . Жуковского, Н. А. Крупенько, С. Ф. Буга. Минск : Колорград, 2024. 462 с.

- 13. Разработка и апробация бактериологической схемы идентификации бактерий Pectobacterium carotovorum / Б. Ж. Рыскалиева, Д. А. Васильев, Н. А. Феоктистова [и др.] // Таврический вестник аграрной науки. 2020. № 2 (22). С. 134—142. URL: https:// tvan. niishk.site (дата обращения: 13.03.2025).
- 14. Распространение возбудителей бактериозов картофеля в РФ / А. Н. Игнатов, Ф. С. Джалилов, А. Н. Карлов [и др.] // Картофель и овощи. 2014. № 8. С. 32–33.
- 15. Рекомендации по защите картофеля от клубневых гнилей во время хранения / С. А. Турко, Д. А. Ильяшенко, В. Г. Иванюк [и др.]; Науч.-практ. центр НАН Беларуси по картофелеводству и плодоовощеводству. Самохваловичи: [б. и.], 2010. 56 с.
- 16. Требования к сортовым и посевным качествам семян картофеля: приложение 4 к постановлению М-ва сельского хозяйства и продовольствия Республики Беларусь от 29.10.2015 № 37: в ред. от 04.10.2017 № 49 // М-во сел. хоз-ва и продовольствия Респ. Беларусь. URL: https://mshp.gov.by/documents/plant/37pril4.pdf (дата обращения: 18.03.2025).
- 17. Top 10 plant pathogenic bacteria in molecular plant pathology / J. Mansfield, S. Genin, S. Magori [et al.] // Molecular Plant Pathology. 2012. Vol. 13, iss. 6. P. 614–629.

V. I. Khalaeva, A. V. Patrakeeva, M. V. Konopatskaya

RUE «Institute of Plant Protection», Priluki, Minsk region

PREVALENCE OF BLACK LEAF OF POTATOES AND SPECIES OF PATHOGENS

Annotation. The article presents data on the incidence of bacterial diseases in potato tubers, which ranged from 0,6 % to 1,8 % in 2020-2024. The prevalence of black leg during the vegetation period in potato agrocenoses was shown to reach a maximum of 13,7 % in 2023. Immunochromatographic analysis of plants with signs of black leg allowed the identification of both the causative agents of this disease, *Pectobacterium atrosepticum* and *Dickeya dianticola*, and the latent agents of ring rot, *Clavibacter michiganensis* subsp. *sepedonicus* and *Clavibacter michiganensis* subsp. *michiganensis*. Diagnosis of plant samples without external symptoms of bacterial diseases using enzyme-linked immunosorbent assay revealed a latent form of material infection with bacterial pathogens. The prevalence of *C. michiganensis* subsp. *sepedonicus* reached 23,3 %, and *P. atrosepticum* reached 31,7 %.

Keywords: black stem, wet rot, tubers, potatoes, bacterial diseases, *P. atrosepticum*, *D. dianticola*, *C. michiganensis* subsp. *sepedonicus*, *C. michiganensis* subsp. *michiganensis*.